Searches for MSSM Higgs at the Tevatron

Amy Connolly/ UC Berkeley For the CDF and DØ Collaborations

- Motivation
- A/H->ττ
 - Run I & Run II (CDF)
- A/Hbb -> bbbb
 - Run 1 Search: CDF
 - Run II:
 - -CDF
 - -DØ
- Conclusions

Why Higgs? Why MSSM?

[an] EWSB mechanism in SM

- Gives mass to particles through H couplings
- Current data points to light Higgs
 M_{Higgs} < 170 GeV @ 95%, Osaka'00
- Higgs has not been definitively observed

LEP2: > 114 GeV 95% CL exclusion

- m_H² receives corrections ~ m_{Planck}²
- Needs fine- tuned parameters for m_H~100 GeV
- Supersymmetry: symmetry between fermions, bosons - > cancellations occur naturally
- Two Higgs doublets are needed

MSSM Higgs

In the MSSM scenario:

- Two Higgs doublets lead to 5 Higgs particles:
 - Two neutral CP- even: h,H
 - One neutral CP- odd: A
 - Two charged: H+ ,H
- Masses governed by two parameters, for ex:

$$\{m_A, \tan \beta\}$$

- Tree level mass relations:
 - M(h)<M(Z)<M(H)</p>
 - -M(A) < M(H)
 - M(H+)<M(W)
- M(h°)<~130 GeV after radiative corrections (top,stop etc.)

- High tanb:
 - A nearly degenerate with
 - $-h (m_A < \sim 130 \text{ GeV})$
 - or H (m_A>~130 GeV)

MSSM Higgs production @ **Tevatron**

√s = 2 TeV

 $(\tan \beta = 3)$

H/h/A can have SMlike x-sections at small tan β

> For processes such as HW and HZ

Some production processes such as:

gg,qq-> Hbb/hbb/Abb

can have

large x-sections at

large tan β!!!

$$\sigma(p\bar{p} \to \varphi) = (g^{h,A,H})^2 \sigma(p\bar{p} \to H_{SM})$$

$$\sigma(p\bar{p} \rightarrow b\bar{b}\phi) = (g^{h,A,H})^2 \sigma(p\bar{p} \rightarrow b\bar{b}H_{SM})$$

 $g \sim 1/\cos\beta \sim \tan\beta \phi = h,H,A \phi = \frac{4}{80}$

MSSM Higgs Branching Ratios

- Searches for Higgs in high tanb region at Tevatron:
 - gg->A/h->ττ
 - gg,qq->A/hbb->bbb

A/H->ττ: Tau ID in Run I (CDF)

Tau Properties:

- Collimated decay products
 - Opening angle:
 θ < m_τ/E_T(τ) <~ 0.2 rad ~
 10°
- Low multiplicity tracks, photons in 10°
- Visible energy reconstructs low mass

Cuts:

- Jet with high visible E_T containing high p_T track
- Isolated in 10°- 30° annulus
- Low track, photon multiplicity in 10° cone
- mπ<1.8 GeV
- |Q|=1

Photons detected in wire chambers at shower-max in the EM Calorimeter: 2D info, $\sigma(x), \sigma(z) \sim 2cm$

A/H->ττ: Ditau Mass Reconstruction (CDF)

$$\not\models_{x}^{\text{meas}} = \not\models_{x}^{\tau_1} + \not\models_{x}^{\tau_2}$$

$$\not\models_{y}^{\text{meas}} = \not\models_{y}^{\tau 1} + \not\models_{y}^{\tau 2}$$

Require $E_{\nu}^{1,2}>0 \rightarrow$

Lose 50% Higgs signal,

Reject 97% W+jets

Full mass of the ditau system may be reconstructed if:

- Assume v's in same direction as visible decay products
- Taus are not back-to-back in azimuthal ->require Δφ<160°

$A/H->\tau\tau$ (CDF)

- Trigger
 - •No τ trigger in Run I \rightarrow use p_T>18 GeV lepton trigger->

One leptonic τ One hadronic τ

- Backgrounds
 - •Z $\rightarrow \tau\tau$ (irred.), QCD, Z \rightarrow ee, W+jets: non-irred. backgrounds rejected through tau ID cuts and mass—reconstruction

Use m_A=95 GeV, $tan\beta$ =40 as benchmark: $\sigma(A/H \rightarrow \tau\tau)$ =8.7pb

- $Z \rightarrow \tau\tau$ irred. backgnd, but:
- Branching Ratio:
 - •Z→ττ: 3.7%
 - \bullet A/H $\rightarrow \tau\tau$: 9%
- P_⊤ Distributions
 - Stiffer A/H p_T distributions than Z p_T distributions:
 - $^{\bullet}$ Δφ<160° cut ~ p_T>15 GeV cut → 30% more efficient for Higgs than Z

 $\sigma(A/H)$ falls fast! Drops by factor of 4 from 95 –120 GeV, 1 RMS ($m_{\tau\tau}$) ~24 GeV -> Need as high a rate as possible! ->

Taus in Run II (CDF,DØ)

Triggers designed for τ physics will greatly increase the acceptance for this search:

- Lower p_T thresholds
- All- hadronic modes open up (~1/2 of branching ratio)

Tau Triggers in Run II:

- Lepton + track triggers (DØ, CDF)
- τ+MET Trigger (DØ,CDF)
- 2 hadronic τ's
 - Calorimeter- based (CDF)
 - Track- based (DØ)

Run I A/H->ττ search sill work in progress, Run II analysis in the works as well

CDF already sees $W \rightarrow \tau v$ events from new τ +MET trigger!

pp -> bbA/h/H -> bbbb: Run I (CDF)

Event selection:

- > 4- jets + ΣE_T >125 GeV trigger
- > ≥ 3 b-tag (displaced vertex)
- $> \Delta \phi_{\rm bb} > 1.9$
- > m_{\phi} dependent cuts optimized for max. expected signif.:
 - > E_T cuts on jets
 - > mass window 1-3 σ

BR x Accept $\sim 0.2 - 0.6\%$ (70<m_o<300 GeV)

Backgrounds:
QCD, Z/W+jets,tt

• For $m_{\phi} = 70$ GeV hypothesis, observe

5 events, expect 4.6 ± 1.4

- Only these 5 events appear in higher mass windows
- No excess above predicted is observed

Tools for pp -> A/h/Hbb -> bbbb: Run II (CDF)

•Z->bb studies -> improved resolution - correcting for μ, E_T, jet charged

fraction

- Studies of QCD jets
 - 30% improvement in jet res.
- uses tracking, shower-max detectors and calorimetry

Dijet Invariant Mass (GeV)

- B-tagging:
 - 3D silicon
 - $|\eta| < 2$
- Improved lepton acceptance
- New specific triggers to recover acceptance (displaced track trigger, multijet) 11

Tools for pp -> A/h/Hbb -> bbbb: Run II (DØ)

- Obtain fractional resolution
 o/M ~ 12%
 - No jet calibration applied
- Consider all jet permutations for mass reconstruction
- Predicted rates normalized to SM prediction (3.7 fb)
- Started recently to look at gb→bh channel which has an order of magnitude larger cross section

- Multijet trigger: 4 jets, E_T>15 GeV,
 |η|<2
 - •Leading jets: $m\phi$ dependent cuts • m_ϕ =120: $E_T^1>55$ GeV, $E_T^2>40$ GeV
 - ΣE_T of jets 3 and 4 > 30 GeV
 - At least 3 b tags
 - •plot all mass combinations, look in mass window

Projected Reach in Run II (CDF, DØ)

- Both experiments study expected Run II sensitivity from bbbb analysis
 - similar results

2fb⁻¹:

->160 GeV (tan β =40) 95% CL ->115 GeV (tan β =40) 5σ discovery

Conclusions

- A/H->ττ:
 - Run I results to be completed soon
 - First glimpse of Run II data also on the way
- A/Hbb->bbb:
 - **■** Run I result excludes > 115 GeV at tanβ=60
 - Run II with both experiments:
 - Set to exclude (discover) significant region of MSSM parameter space
 - Optimistic about improvements from
 - Triggers
 - Jet resolution
 - b- tagging

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.